Publications

What is a Publication?
153 Publications visible to you, out of a total of 153

Abstract (Expand)

The roles of organic matter in seawater have often been discussed from the aspect of metal toxicity and bioavailability in seawater. In fact, organic ligands, as part of the organic matter, can work as a trace metal ion buffer system. At the same time, however, the release of well-defined metal chelators as exudates by, for example, marine bacteria is necessary to compete with natural metal complexes and sustain the metal acquisition required for several processes including nitrogen fixation. The identification, isolation, and structure elucidation of chelators is, thus, essential to our understanding of metal stress management in the natural habitat and role of these chelators on cellular process. The isolation of an organic ligand from its chemosphere is a challenging task. The purpose of this paper is, therefore, to give an additional perspective on how the effective application of stable isotope pairs of a metal of interest (both cations and oxoanions) combined with mass spectrometric analyses can pave the way to discovering new organic ligands (i.e., metallophores) and the chelating characteristics of dissolved organic matter (DOM): Pairs of isotopes, such as 54Fe and 58Fe (or any other pair of available isotopes of a given metal), can be used to create easily detectable unique isotopic signatures in mass spectra when they are bound by chelators. The identification of organic ligands is outlined for a proposed model system of mutualistic interactions between the green macroalga Ulva (Chlorophyta) and associated bacteria, as well as discussed briefly for DOM along land-sea gradients. Overall, the characterization of a broader spectrum of chelators in aquatic systems will open a new window to decipher the eco-physiological functions of organic ligands as a metal ion buffer and metallophores in metal cycling in marine ecosystems.

Author: Thomas Wichard

Date Published: 29th Jul 2016

Publication Type: Not specified

Abstract (Expand)

Secondary metabolite diversity is considered an important fitness determinant for plants' biotic and abiotic interactions in nature. This diversity can be examined in two dimensions. The first one considers metabolite diversity across plant species. A second way of looking at this diversity is by considering the tissue-specific localization of pathways underlying secondary metabolism within a plant. Although these cross-tissue metabolite variations are increasingly regarded as important readouts of tissue-level gene function and regulatory processes, they have rarely been comprehensively explored by nontargeted metabolomics. As such, important questions have remained superficially addressed. For instance, which tissues exhibit prevalent signatures of metabolic specialization? Reciprocally, which metabolites contribute most to this tissue specialization in contrast to those metabolites exhibiting housekeeping characteristics? Here, we explore tissue-level metabolic specialization in Nicotiana attenuata, an ecological model with rich secondary metabolism, by combining tissue-wide nontargeted mass spectral data acquisition, information theory analysis, and tandem MS (MS/MS) molecular networks. This analysis was conducted for two different methanolic extracts of 14 tissues and deconvoluted 895 nonredundant MS/MS spectra. Using information theory analysis, anthers were found to harbor the most specialized metabolome, and most unique metabolites of anthers and other tissues were annotated through MS/MS molecular networks. Tissue-metabolite association maps were used to predict tissue-specific gene functions. Predictions for the function of two UDP-glycosyltransferases in flavonoid metabolism were confirmed by virus-induced gene silencing. The present workflow allows biologists to amortize the vast amount of data produced by modern MS instrumentation in their quest to understand gene function.

Authors: Dapeng Li, S. Heiling, I. T. Baldwin, E. Gaquerel

Date Published: 9th Nov 2016

Publication Type: Not specified

Abstract (Expand)

Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) was employed to discriminate between cell differentiation processes in macroalgae. One of the key developmental processes in the algal life cycle is the production of germ cells (gametes and zoids). The gametogenesis of the marine green macroalga Ulva mutabilis (Chlorophyta) was monitored by metabolomic snapshots of the surface, when blade cells differentiate synchronously into gametangia and giving rise to gametes. To establish MSI for macroalgae, dimethylsulfoniopropionate (DMSP), a known algal osmolyte, was determined. MSI of the surface of U. mutabilis followed by chemometric data analysis revealed dynamic metabolomic changes during cell differentiation. DMSP and a total of 55 specific molecular biomarkers, which could be assigned to important stages of the gametogenesis, were detected. Our research contributes to the understanding of molecular mechanisms underlying macroalgal cell differentiation. Graphical abstract Molecular changes during cell differentiation of the marine macroalga Ulva were visualized by matrix assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI).

Authors: R. W. Kessler, A. C. Crecelius, U. S. Schubert, T. Wichard

Date Published: 11th Jun 2017

Publication Type: Not specified

Abstract (Expand)

The guts of insects harbor symbiotic bacterial communities. However, due to their complexity, it is challenging to relate a specific symbiotic phylotype to its corresponding function. In the present study, we focused on the forest cockchafer (Melolontha hippocastani), a phytophagous insect with a dual life cycle, consisting of a root-feeding larval stage and a leaf-feeding adult stage. By combining in vivo stable isotope probing (SIP) with 13C cellulose and 15N urea as trophic links, with Illumina MiSeq (Illumina-SIP), we unraveled bacterial networks processing recalcitrant dietary components and recycling nitrogenous waste. The bacterial communities behind these processes change between larval and adult stages. In 13C cellulose-fed insects, the bacterial families Lachnospiraceae and Enterobacteriaceae were isotopically labeled in larvae and adults, respectively. In 15N urea-fed insects, the genera Burkholderia and Parabacteroides were isotopically labeled in larvae and adults, respectively. Additionally, the PICRUSt-predicted metagenome suggested a possible ability to degrade hemicellulose and to produce amino acids of, respectively, 13C cellulose- and 15N urea labeled bacteria. The incorporation of 15N from ingested urea back into the insect body was confirmed, in larvae and adults, by isotope ratio mass spectrometry (IRMS). Besides highlighting key bacterial symbionts of the gut of M. hippocastani, this study provides example on how Illumina-SIP with multiple trophic links can be used to target microorganisms embracing different roles within an environment.

Authors: P. Alonso-Pernas, S. Bartram, E. M. Arias-Cordero, A. L. Novoselov, L. Halty-deLeon, Y. Shao, W. Boland

Date Published: 28th Oct 2017

Publication Type: Not specified

Abstract (Expand)

The antilarval mushroom polyenes 18-methyl-19-oxoicosaoctaenoic acid and 20-methyl-21-oxodocosanonaenoic acid appear in response to injury of the mycelium of the stereaceous mushroom BY1. We identified a polyketide synthase (PPS1) which belongs to a hitherto completely uncharacterized clade of polyketide synthases. Expression of the PPS1 gene is massively upregulated following mycelial damage. The synthesis of the above polyenes was reconstituted in the mold Aspergillus niger as a heterologous host. This demonstrates that PPS1 1) synchronously produces branched-chain polyketides of varied lengths, and 2) catalyzes the unprecedented shift of eight or nine double bonds. This study represents the first characterization of a reducing polyketide synthase from a mushroom. We also show that injury-induced de novo synthesis of polyketides is a fungal response strategy.

Authors: P. Brandt, M. Garcia-Altares, M. Nett, C. Hertweck, D. Hoffmeister

Date Published: 26th Apr 2017

Publication Type: Not specified

Abstract (Expand)

Different plant defense theories have provided important theoretical guidance in explaining patterns in plant specialized metabolism, but their critical predictions remain to be tested. Here, we systematically explored the metabolomes of Nicotiana attenuata, from single plants to populations, as well as of closely related species, using unbiased tandem mass spectrometry (MS/MS) analyses and processed the abundances of compound spectrum-based MS features within an information theory framework to test critical predictions of optimal defense (OD) and moving target (MT) theories. Information components of plant metabolomes were consistent with the OD theory but contradicted the main prediction of the MT theory for herbivory-induced dynamics of metabolome compositions. From micro- to macroevolutionary scales, jasmonate signaling was confirmed as the master determinant of OD, while ethylene signaling provided fine-tuning for herbivore-specific responses annotated via MS/MS molecular networks.

Authors: D. Li, R. Halitschke, I. T. Baldwin, E. Gaquerel

Date Published: 25th Jun 2020

Publication Type: Journal

Abstract (Expand)

Upon injury, psychotropic psilocybin-producing mushrooms instantly develop an intense blue color, the chemical basis and mode of formation of which has remained elusive. We report two enzymes from Psilocybe cubensis that carry out a two-step cascade to prepare psilocybin for oxidative oligomerization that leads to blue products. The phosphatase PsiP removes the 4-O-phosphate group to yield psilocin, while PsiL oxidizes its 4-hydroxy group. The PsiL reaction was monitored by in situ (13) C NMR spectroscopy, which indicated that oxidative coupling of psilocyl residues occurs primarily via C-5. MS and IR spectroscopy indicated the formation of a heterogeneous mixture of preferentially psilocyl 3- to 13-mers and suggest multiple oligomerization routes, depending on oxidative power and substrate concentration. The results also imply that phosphate ester of psilocybin serves a reversible protective function.

Authors: C. Lenz, J. Wick, D. Braga, M. Garcia-Altares, G. Lackner, C. Hertweck, M. Gressler, D. Hoffmeister

Date Published: 20th Jan 2020

Publication Type: Journal

Abstract (Expand)

Genome mining of one of the protective symbionts ( Burkholderia gladioli ) of the invasive beetle Lagria villosa revealed a cryptic gene cluster coding for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore. Targeted gene inactivation, metabolic profiling and bioassays led to the discovery of the gladiofungins as yet overlooked components of the antimicrobial armory of the beetle symbiont, specifically against the entomopathogenic fungus Purpureocillium lilacinum . By mutational analyses, isotope labeling and in silico analyses of the modular polyketide synthase, we found that the rare butenolide moiety of gladiofungins derives from an unprecedented polyketide chain termination reaction involving a glycerol-derived C3 building block. The key role of an A-factor synthase (AfsA)-like offloading domain was corroborated by CRISPR-Cas-mediated gene editing, which facilitated the precise excision within a PKS domain.

Authors: S. P. Niehs, J. Kumpfmuller, B. Dose, R. F. Little, K. Ishida, L. V. Florez, M. Kaltenpoth, C. Hertweck

Date Published: 26th Jun 2020

Publication Type: Not specified

Abstract (Expand)

We report here the 98.5 Mbp haploid genome (12,924 protein coding genes) of Ulva mutabilis, a ubiquitous and iconic representative of the Ulvophyceae or green seaweeds. Ulva's rapid and abundant growth makes it a key contributor to coastal biogeochemical cycles; its role in marine sulfur cycles is particularly important because it produces high levels of dimethylsulfoniopropionate (DMSP), the main precursor of volatile dimethyl sulfide (DMS). Rapid growth makes Ulva attractive biomass feedstock but also increasingly a driver of nuisance "green tides." Ulvophytes are key to understanding the evolution of multicellularity in the green lineage, and Ulva morphogenesis is dependent on bacterial signals, making it an important species with which to study cross-kingdom communication. Our sequenced genome informs these aspects of ulvophyte cell biology, physiology, and ecology. Gene family expansions associated with multicellularity are distinct from those of freshwater algae. Candidate genes, including some that arose following horizontal gene transfer from chromalveolates, are present for the transport and metabolism of DMSP. The Ulva genome offers, therefore, new opportunities to understand coastal and marine ecosystems and the fundamental evolution of the green lineage.

Authors: O. De Clerck, S. M. Kao, K. A. Bogaert, J. Blomme, F. Foflonker, M. Kwantes, E. Vancaester, L. Vanderstraeten, E. Aydogdu, J. Boesger, G. Califano, B. Charrier, R. Clewes, A. Del Cortona, S. D'Hondt, N. Fernandez-Pozo, C. M. Gachon, M. Hanikenne, L. Lattermann, F. Leliaert, X. Liu, C. A. Maggs, Z. A. Popper, J. A. Raven, M. Van Bel, P. K. I. Wilhelmsson, D. Bhattacharya, J. C. Coates, S. A. Rensing, D. Van Der Straeten, A. Vardi, L. Sterck, K. Vandepoele, Y. Van de Peer, T. Wichard, J. H. Bothwell

Date Published: 24th Sep 2018

Publication Type: Journal

Abstract (Expand)

Gramibactin (GBT) is an archetype for the new class of diazeniumdiolate siderophores, produced by Paraburkholderia graminis, a cereal-associated rhizosphere bacterium, for which a detailed solution thermodynamic study exploring the iron coordination properties is reported. The acid-base behavior of gramibactin as well as its complexing ability toward Fe(3+) was studied over a wide range of pH values (2</=pH</=11). For the latter the ligand-competition method employing EDTA was used. Only two species are formed: [Fe(GBT)](-) (pH 2 to 9) and [Fe(GBT)(OH)2 ](3-) (pH>/=9). The formation of [Fe(GBT)](-) and its occurrence in real systems was confirmed by LC-HRESIMS analysis of the bacteria culture broth extract. The sequestering ability of gramibactin was also evaluated in terms of the parameters pFe and pL0.5 . Gramibactin exhibits a higher sequestering ability toward Fe(3+) than EDTA and of the same order of magnitude as hydroxamate-type microbial siderophores, but smaller than most of the catecholate-type siderophores and much higher than the most known phytosiderophores.

Authors: S. Gama, R. Hermenau, M. Frontauria, D. Milea, S. Sammartano, C. Hertweck, W. Plass

Date Published: 5th Feb 2021

Publication Type: Journal

Abstract (Expand)

Psilocybe mushrooms are best known for their l-tryptophan-derived psychotropic alkaloid psilocybin. Dimethylation of norbaeocystin, the precursor of psilocybin, by the enzyme PsiM is a critical step during the biosynthesis of psilocybin. However, the "magic" mushroom Psilocybe serbica also mono- and dimethylates l-tryptophan, which is incompatible with the specificity of PsiM. Here, a second methyltransferase, TrpM, was identified and functionally characterized. Mono- and dimethylation activity on l-tryptophan was reconstituted in vitro, whereas tryptamine was rejected as a substrate. Therefore, we describe a second l-tryptophan-dependent pathway in Psilocybe that is not part of the biosynthesis of psilocybin. TrpM is unrelated to PsiM but originates from a retained ancient duplication event of a portion of the egtDB gene that encodes an ergothioneine biosynthesis enzyme. During mushroom evolution, this duplicated gene was widely lost but re-evolved sporadically and independently in various genera. We propose a new secondary metabolism evolvability mechanism, in which weakly selected genes are retained through preservation in a widely distributed, conserved pathway.

Authors: F. Blei, J. Fricke, J. Wick, J. C. Slot, D. Hoffmeister

Date Published: 18th Oct 2018

Publication Type: Journal

Powered by
(v.1.14.1)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH