Basidiomycete fungi are characterized ecologically for their vital functional role in ecosystem carbon recycling and chemically for their capacity to produce a diverse array of small molecules. Chromophoric natural products derived from the quinone precursor atromentin, such as variegatic acid and involutin, have been shown to function in redox cycling. Yet, in the context of an inter-kingdom natural system these pigments are still elusive. Here, we co-cultured the model saprotrophic basidiomycete Serpula lacrymans with an ubiquitous terrestrial bacterium, either Bacillus subtilis, Pseudomonas putida, or Streptomyces iranensis. For each, there was induction of the gene cluster encoding a non-ribosomal peptide synthetase-like enzyme (atromentin synthetase) and an aminotransferase which together produce atromentin. Correspondingly during co-culturing there was an increase in secreted atromentin-derived pigments, i.e., variegatic, xerocomic, isoxerocomic and atromentic acid. Bioinformatic analyses from 14 quinone synthetase genes, twelve of which are encoded in a cluster, identified a common promoter motif indicating a general regulatory mechanism for numerous basidiomycetes. This article is protected by copyright. All rights reserved.
SEEK ID: https://data.chembiosys.de/publications/26
PubMed ID: 27699944
Publication type: Not specified
Journal: Environ Microbiol
Citation:
Date Published: 5th Oct 2016
Registered Mode: Not specified
Views: 2096
Created: 20th Oct 2016 at 12:27
Last updated: 9th Feb 2023 at 08:34
This item has not yet been tagged.
None