Publications

What is a Publication?
4 Publications visible to you, out of a total of 4

Abstract (Expand)

Gramibactin (GBT) is an archetype for the new class of diazeniumdiolate siderophores, produced by Paraburkholderia graminis, a cereal-associated rhizosphere bacterium, for which a detailed solution thermodynamic study exploring the iron coordination properties is reported. The acid-base behavior of gramibactin as well as its complexing ability toward Fe(3+) was studied over a wide range of pH values (2</=pH</=11). For the latter the ligand-competition method employing EDTA was used. Only two species are formed: [Fe(GBT)](-) (pH 2 to 9) and [Fe(GBT)(OH)2 ](3-) (pH>/=9). The formation of [Fe(GBT)](-) and its occurrence in real systems was confirmed by LC-HRESIMS analysis of the bacteria culture broth extract. The sequestering ability of gramibactin was also evaluated in terms of the parameters pFe and pL0.5 . Gramibactin exhibits a higher sequestering ability toward Fe(3+) than EDTA and of the same order of magnitude as hydroxamate-type microbial siderophores, but smaller than most of the catecholate-type siderophores and much higher than the most known phytosiderophores.

Authors: S. Gama, R. Hermenau, M. Frontauria, D. Milea, S. Sammartano, C. Hertweck, W. Plass

Date Published: 5th Feb 2021

Publication Type: Journal

Abstract (Expand)

Genome mining and chemical analyses revealed that rhizosphere bacteria (Paraburkholderia graminis) produce a new type of siderophore, gramibactin, a lipodepsipeptide that efficiently binds iron with a logbeta value of 27.6. Complexation-induced proton NMR chemical shifts show that the unusual N-nitrosohydroxylamine (diazeniumdiolate) moieties participate in metal binding. Gramibactin biosynthesis genes are conserved in numerous plant-associated bacteria associated with rice, wheat, and maize, which may utilize iron from the complex.

Authors: R. Hermenau, K. Ishida, S. Gama, B. Hoffmann, M. Pfeifer-Leeg, W. Plass, J. F. Mohr, T. Wichard, H. P. Saluz, C. Hertweck

Date Published: 1st Aug 2018

Publication Type: Journal

Abstract (Expand)

The recognition of quinolinic carboxylic acids as natural chelants and the recent observation of a high production of 8-hydroxyquinoline-2-carboxylic acid (8-HQA) in the gut of several Noctuid larvae (e.g. Spodoptera littoralis) has inspired the study of the chelation properties of 8-HQA towards Fe2+ and Fe3+. Here, we report a detailed characterization of the thermodynamic solution behaviour of Fe2+/8-HQA and Fe3+/8-HQA systems as a function of the pH value. The acid–base properties of 8-HQA and its binding ability towards Fe2+ and Fe3+ have been investigated over a wide range of pH values (2.0 ≤ pH ≤ 11.0) by ISE-H+ (glass electrode) potentiometric titrations in KCl(aq) at I = 0.2 mol dm−3 and at T = 298.15 K. For both oxidation states, various FeLqHr species are formed, with q = 1, 2 (and 3), and −2 ≤ r ≤ 1. The presence of the main FeLqHr species was confirmed by HESI-HRMS. ESR measurements have also been performed to get some extra information on the Fe3+ coordination, indicating a distorted octahedral symmetry around the metal center. Quantum mechanical calculations have been carried out in order to characterize the structural features of selected metal complexes. The complexing ability of 8-HQA is generally much higher for Fe3+ than Fe2+. Nevertheless, the sequestering ability of 8-HQA towards these two oxidation states of this metal ion, obtained by the calculation of several pL0.5 values, resulted in it being highly dependent on the pH value: (i) at relatively low pH values, it is higher for Fe3+ (pL0.5 = 6.3 at pH = 3.0) than for Fe2+ (pL0.5 = 3.1 at pH = 3.0); (ii) it is almost the same at pH = 8.1 (Fe3+: pL0.5 = 8.3; Fe2+: pL0.5 = 8.1); (iii) it is higher for Fe2+ at high pH values (pL0.5 = 8.9 for Fe2+ and pL0.5 = 6.2 for Fe3+ at pH = 10.0). The determination of the stability constants of the Fe2+/8-HQA and Fe3+/8-HQA complexes was also complemented by data obtained by the ligand-competition approach, using EDTA as a competing ligand over a wide range of cation and ligand concentrations and ratios. This also allowed a more thorough investigation of both the Fe2+/EDTA and Fe3+/EDTA systems, providing an accurate stability constant dataset for the Fep(EDTA)qHr species under the above-mentioned experimental conditions, which are commonly used in biological studies.

Authors: Sofia Gama, Mariachiara Frontauria, Nico Ueberschaar, Giuseppe Brancato, Demetrio Milea, Silvio Sammartano, Winfried Plass

Date Published: 9th Apr 2018

Publication Type: Not specified

Abstract (Expand)

Aiming to explore alternative mechanisms of cellular uptake and cytotoxicity, we have studied a new family of copper(II) complexes (CuL1-CuL4) with bis(thiosemicarbazone) (BTSC) ligands containing pendant protonable cyclic amines (morpholine and piperidine). Herein, we report on the synthesis and characterization of these new complexes, as well as on their biological performance (cytotoxic activity, cellular uptake, protein and DNA binding), in comparison with the parental CuIIATSM (ATSM=diacetyl-bis(N4-methylthiosemicarbazonate) complex without pendant cyclic amines. The new compounds have been characterized by a range of analytical techniques including ESI-MS, IR spectroscopy, cyclic voltammetry, reverse-phase HPLC and X-ray spectroscopy. In vitro cytotoxicity studies revealed that the copper complexes are cytotoxic, unlike the corresponding ligands, with a similar potency to that of CuATSM. Unlike CuATSM, the new complexes were able to circumvent cisplatin cross-resistance. The presence of the protonable cyclic amines did not lead to an enhancement of the interaction of the complexes with human serum albumin or calf thymus DNA. However, CuL1-CuL4 showed a remarkably augmented cellular uptake compared with CuATSM, as proved by uptake, internalization and externalization studies that were performed using the radioactive congeners 64CuL1-64CuL4. The enhanced cellular uptake of CuL1-CuL4 indicates that this new family of CuIIBTSC complexes deserves to be further evaluated in the design of metallodrugs for cancer theranostics.

Authors: E. Palma, F. Mendes, G. R. Morais, I. Rodrigues, I. C. Santos, M. P. Campello, P. Raposinho, I. Correia, S. Gama, D. Belo, V. Alves, A. J. Abrunhosa, I. Santos, A. Paulo

Date Published: 3rd Dec 2016

Publication Type: Not specified

Powered by
(v.1.14.1)
Copyright © 2008 - 2023 The University of Manchester and HITS gGmbH