A giant type I polyketide synthase participates in zygospore maturation in Chlamydomonas reinhardtii.

Abstract:

Polyketide synthases (PKSs) occur in many bacteria, fungi and plants. They are highly versatile enzymes involved in the biosynthesis of a large variety of compounds including antimicrobial agents, polymers associated with bacterial cell walls and plant pigments. While harmful algae are known to produce polyketide toxins, sequences of the genomes of non-toxic algae, including those of many green-algal species, have surprisingly revealed the presence of genes encoding type I PKSs. The genome of the model alga Chlamydomonas reinhardtii (Chlorophyta) contains a single type I PKS gene, designated PKS1 (Cre10.g449750), which encodes a giant PKS with a predicted mass of 2.3 MDa. Here, we show that PKS1 is induced in two-day old zygotes and is required for their development into zygospores, the dormant stage of the zygote. Wild-type zygospores contain knob-like structures (~50 nm diameter) that form at the cell surface and develop a central cell wall layer; both of these structures are absent from homozygous pks1 mutants. Additionally, in contrast to wild-type zygotes, chlorophyll degradation is delayed in homozygous pks1 mutant zygotes, indicating a disruption of zygospore development. In agreement with a role of the PKS in the formation of the highly resistant zygospore wall, mutant zygotes have lost the formidable desiccation tolerance of wild-type zygotes. Together, our results represent functional analyses of a PKS mutant in a photosynthetic eukaryotic microorganism, revealing a central function for polyketides in the sexual cycle and survival under stressful environmental conditions. This article is protected by copyright. All rights reserved.

SEEK ID: https://data.chembiosys.de/publications/93

PubMed ID: 29729034

Projects: A2, C1

Journal: Plant J

Citation: Plant J. 2018 May 4. doi: 10.1111/tpj.13948.

Date Published: No date defined

Authors: N. Heimerl, E. Hommel, M. Westermann, D. Meichsner, M. Lohr, Christian Hertweck, A. R. Grossman, Maria Mittag, Sasso Severin

Help
help Creator
Activity

Views: 284

Created: 30th May 2018 at 14:07

help Attributions

None

Related items

Powered by
Seek new full
(v.1.8.3)
Copyright © 2008 - 2019 The University of Manchester and HITS gGmbH