Publications

What is a Publication?
9 Publications visible to you, out of a total of 9

Abstract (Expand)

Bacteria often release diverse iron-chelating compounds called siderophores to scavenge iron from the environment for many essential biological processes. In peatlands, where the biogeochemical cycle of iron and dissolved organic matter (DOM) are coupled, bacterial iron acquisition can be challenging even at high total iron concentrations. We found that the bacterium Pseudomonas sp. FEN, isolated from an Fe-rich peatland in the Northern Bavarian Fichtelgebirge (Germany), released an unprecedented siderophore for its genus. High-resolution mass spectrometry (HR-MS) using metal isotope-coded profiling (MICP), MS/MS experiments, and nuclear magnetic resonance spectroscopy (NMR) identified the amino polycarboxylic acid rhizobactin and a novel derivative at even higher amounts, which was named rhizobactin B. Interestingly, pyoverdine-like siderophores, typical for this genus, were not detected. With peat water extract (PWE), studies revealed that rhizobactin B could acquire Fe complexed by DOM, potentially through a TonB-dependent transporter, implying a higher Fe binding constant of rhizobactin B than DOM. The further uptake of Fe-rhizobactin B by Pseudomonas sp. FEN suggested its role as a siderophore. Rhizobactin B can complex several other metals, including Al, Cu, Mo, and Zn. The study demonstrates that the utilization of rhizobactin B can increase the Fe availability for Pseudomonas sp. FEN through ligand exchange with Fe-DOM, which has implications for the biogeochemical cycling of Fe in this peatland.

Authors: S. Kugler, R. E. Cooper, J. Boessneck, K. Kusel, T. Wichard

Date Published: 7th Oct 2020

Publication Type: Journal

Abstract (Expand)

Frankia spp. are widespread nitrogen-fixing soil bacteria, which often live in symbiosis with a broad range of hosts. Metal homeostasis plays a crucial role in the success of the symbiosis regarding the acquisition of essential trace metals and detoxification of potentially toxic elements. We have hypothesised that Frankia releases many organic ligands with a broad spectrum of affinity for essential and toxic metals. We coined the term 'ligandosphere' to describe the entirety of excreted metal complexing agents and ligands derived from the dissolved organic matter. Using metal isotope-coded profiling (MICP); metallophores of physiological important and toxic trace metals were identified by the addition of stable metal isotope pairs such as 54Fe/58Fe, 63Cu/65Cu, 66Zn/68Zn or 95Mo/98Mo. Liquid chromatography coupled to a mass spectrometer revealed strong variations of the metallophore profile in between the 14 test-strains. In total, about 83 organic ligands were identified as binding to one of the tested metals. The predicted sum formula of the major Fe binding ligands and MS/MS experiments suggested that several metallophore candidates have a similar molecular backbone. Growth experiments with a hyper-producer of metallophores revealed a positive relationship between metallophore production and the concentration of Cu in the growth medium. The present study provides the first comprehensive overview of the complexity of Frankia's ligandosphere. It opens a path to a deeper understanding of mechanisms that regulate metal homeostasis in frankiae. Deciphering these mechanisms is important since the fitness of actinorhizal plants and their potential in ecological restoration relies heavily on their symbiosis with frankiae.

Authors: M. Deicke, J. F. Mohr, S. Roy, P. Herzsprung, J. P. Bellenger, T. Wichard

Date Published: 17th Apr 2019

Publication Type: Journal

Abstract (Expand)

Cupriachelin is a photoreactive lipopeptide siderophore produced by the freshwater bacterium Cupriavidus necator H16. In the presence of sunlight, the iron-loaded siderophore undergoes photolytic cleavage, thereby releasing solubilized iron into the environment. This iron is not only available to the siderophore producer, but also to the surrounding microbial community. In this study, the cupriachelin-based interaction between C. necator H16 and the freshwater diatom Navicula pelliculosa was investigated. A reporter strain of the bacterium was constructed to study differential expression levels of the cupriachelin biosynthesis gene cucJ in response to varying environmental conditions. Not only iron starvation, but also culture supernatants of N. pelliculosa were found to induce cupriachelin biosynthesis. The transcription factors involved in this differential gene expression were identified using DNA-protein pulldown assays. Besides the well-characterized ferric uptake regulator, a two-component system was found to tune the expression of cupriachelin biosynthesis genes in the presence of diatom supernatants.

Authors: C. Kurth, I. Wasmuth, T. Wichard, G. Pohnert, M. Nett

Date Published: 27th Nov 2018

Publication Type: Journal

Abstract (Expand)

The recognition of quinolinic carboxylic acids as natural chelants and the recent observation of a high production of 8-hydroxyquinoline-2-carboxylic acid (8-HQA) in the gut of several Noctuid larvae (e.g. Spodoptera littoralis) has inspired the study of the chelation properties of 8-HQA towards Fe2+ and Fe3+. Here, we report a detailed characterization of the thermodynamic solution behaviour of Fe2+/8-HQA and Fe3+/8-HQA systems as a function of the pH value. The acid–base properties of 8-HQA and its binding ability towards Fe2+ and Fe3+ have been investigated over a wide range of pH values (2.0 ≤ pH ≤ 11.0) by ISE-H+ (glass electrode) potentiometric titrations in KCl(aq) at I = 0.2 mol dm−3 and at T = 298.15 K. For both oxidation states, various FeLqHr species are formed, with q = 1, 2 (and 3), and −2 ≤ r ≤ 1. The presence of the main FeLqHr species was confirmed by HESI-HRMS. ESR measurements have also been performed to get some extra information on the Fe3+ coordination, indicating a distorted octahedral symmetry around the metal center. Quantum mechanical calculations have been carried out in order to characterize the structural features of selected metal complexes. The complexing ability of 8-HQA is generally much higher for Fe3+ than Fe2+. Nevertheless, the sequestering ability of 8-HQA towards these two oxidation states of this metal ion, obtained by the calculation of several pL0.5 values, resulted in it being highly dependent on the pH value: (i) at relatively low pH values, it is higher for Fe3+ (pL0.5 = 6.3 at pH = 3.0) than for Fe2+ (pL0.5 = 3.1 at pH = 3.0); (ii) it is almost the same at pH = 8.1 (Fe3+: pL0.5 = 8.3; Fe2+: pL0.5 = 8.1); (iii) it is higher for Fe2+ at high pH values (pL0.5 = 8.9 for Fe2+ and pL0.5 = 6.2 for Fe3+ at pH = 10.0). The determination of the stability constants of the Fe2+/8-HQA and Fe3+/8-HQA complexes was also complemented by data obtained by the ligand-competition approach, using EDTA as a competing ligand over a wide range of cation and ligand concentrations and ratios. This also allowed a more thorough investigation of both the Fe2+/EDTA and Fe3+/EDTA systems, providing an accurate stability constant dataset for the Fep(EDTA)qHr species under the above-mentioned experimental conditions, which are commonly used in biological studies.

Authors: Sofia Gama, Mariachiara Frontauria, Nico Ueberschaar, Giuseppe Brancato, Demetrio Milea, Silvio Sammartano, Winfried Plass

Date Published: 9th Apr 2018

Publication Type: Not specified

Abstract (Expand)

Introduction: Stable isotopic labeling experiments are powerful tools to study metabolic pathways, to follow tracers and fluxes in biotic and abiotic transformations and to elucidate molecules involvedd in metal complexing. Objective: To introduce a software tool for the identification of isotopologues from mass spectrometry data. Methods: DeltaMS relies on XCMS peak detection and X13CMS isotopologue grouping and then analyses data for specific isotope ratios and the relative error of these ratios. It provides pipelines for recognition of isotope patterns in three experiment types commonly used in isotopic labeling studies: (1) Search for isotope signatures with a specific mass shift and intensity ratio in one sample set. (2) Analyze two sample sets for a specific mass shift and, optionally, the isotope ratio, whereby one sample set is isotope-labeled, and one is not. (3) Analyze isotope-guided perturbation experiments with a setup described in X13CMS. Results: To illustrate the versatility of DeltaMS, we analyze data sets from case-studies that commonly pose challenges in evaluation of natural isotopes or isotopic signatures in labeling experiment. In these examples, the untargeted detection of sulfur, bromine and artificial metal isotopic patterns is enabled by the automated search for specific isotopes or isotope signatures. Conclusion: DeltaMS provides a platform for the identification of (pre-defined) isotopologues in MS data from single samples or comparative metabolomics data sets.

Authors: Tim U. H. Baumeister, Nico Ueberschaar, Wolfgang Schmidt-Heck, J. Frieder Mohr, Michael Deicke, Thomas Wichard, Reinhard Guthke, Georg Pohnert

Date Published: 27th Feb 2018

Publication Type: Not specified

Abstract (Expand)

Aiming to explore alternative mechanisms of cellular uptake and cytotoxicity, we have studied a new family of copper(II) complexes (CuL1-CuL4) with bis(thiosemicarbazone) (BTSC) ligands containing pendant protonable cyclic amines (morpholine and piperidine). Herein, we report on the synthesis and characterization of these new complexes, as well as on their biological performance (cytotoxic activity, cellular uptake, protein and DNA binding), in comparison with the parental CuIIATSM (ATSM=diacetyl-bis(N4-methylthiosemicarbazonate) complex without pendant cyclic amines. The new compounds have been characterized by a range of analytical techniques including ESI-MS, IR spectroscopy, cyclic voltammetry, reverse-phase HPLC and X-ray spectroscopy. In vitro cytotoxicity studies revealed that the copper complexes are cytotoxic, unlike the corresponding ligands, with a similar potency to that of CuATSM. Unlike CuATSM, the new complexes were able to circumvent cisplatin cross-resistance. The presence of the protonable cyclic amines did not lead to an enhancement of the interaction of the complexes with human serum albumin or calf thymus DNA. However, CuL1-CuL4 showed a remarkably augmented cellular uptake compared with CuATSM, as proved by uptake, internalization and externalization studies that were performed using the radioactive congeners 64CuL1-64CuL4. The enhanced cellular uptake of CuL1-CuL4 indicates that this new family of CuIIBTSC complexes deserves to be further evaluated in the design of metallodrugs for cancer theranostics.

Authors: E. Palma, F. Mendes, G. R. Morais, I. Rodrigues, I. C. Santos, M. P. Campello, P. Raposinho, I. Correia, S. Gama, D. Belo, V. Alves, A. J. Abrunhosa, I. Santos, A. Paulo

Date Published: 3rd Dec 2016

Publication Type: Not specified

Abstract (Expand)

Polyunsaturated aldehydes (PUAs) are a group of microalgal metabolites that have attracted a lot of attention due to their biological activity. Determination of PUAs has become an important routine procedure in plankton and biofilm investigations, especially those that deal with chemically mediated interactions. Here we introduce a fast and direct derivatization free method that allows quantifying PUAs in the nanomolar range, sufficient to undertake the analysis from cultures and field samples. The sample preparation requires one simple filtration step and the initiation of PUA formation by cell disruption. After centrifugation the samples are ready for measurement without any further handling. Within one chromatographic run this method additionally allows us to monitor the formation of the polar oxylipins arising from the cleavage of precursor fatty acids. The robust method is based on analyte separation and detection using ultra high performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (UHPLC-APCI MS) and enables high throughput investigations by employing an analysis time of only 5 min. Our protocol thus provides an alternative and extension to existing PUA determinations based on gas chromatography-mass spectrometry (GC-MS) with shorter run times and without any chemical derivatization. It also enables researchers with widely available LC-MS analytical platforms to monitor PUAs. Additionally, non-volatile oxylipins such as ω-oxo-acids and related compounds can be elucidated and monitored.

Authors: Constanze Kuhlisch, Michael Deicke, Nico Ueberschaar, Thomas Wichard, Georg Pohnert

Date Published: 15th Oct 2016

Publication Type: Not specified

Abstract (Expand)

The roles of organic matter in seawater have often been discussed from the aspect of metal toxicity and bioavailability in seawater. In fact, organic ligands, as part of the organic matter, can work as a trace metal ion buffer system. At the same time, however, the release of well-defined metal chelators as exudates by, for example, marine bacteria is necessary to compete with natural metal complexes and sustain the metal acquisition required for several processes including nitrogen fixation. The identification, isolation, and structure elucidation of chelators is, thus, essential to our understanding of metal stress management in the natural habitat and role of these chelators on cellular process. The isolation of an organic ligand from its chemosphere is a challenging task. The purpose of this paper is, therefore, to give an additional perspective on how the effective application of stable isotope pairs of a metal of interest (both cations and oxoanions) combined with mass spectrometric analyses can pave the way to discovering new organic ligands (i.e., metallophores) and the chelating characteristics of dissolved organic matter (DOM): Pairs of isotopes, such as 54Fe and 58Fe (or any other pair of available isotopes of a given metal), can be used to create easily detectable unique isotopic signatures in mass spectra when they are bound by chelators. The identification of organic ligands is outlined for a proposed model system of mutualistic interactions between the green macroalga Ulva (Chlorophyta) and associated bacteria, as well as discussed briefly for DOM along land-sea gradients. Overall, the characterization of a broader spectrum of chelators in aquatic systems will open a new window to decipher the eco-physiological functions of organic ligands as a metal ion buffer and metallophores in metal cycling in marine ecosystems.

Author: Thomas Wichard

Date Published: 29th Jul 2016

Publication Type: Not specified

Abstract (Expand)

Biological nitrogen fixation can be catalyzed by three isozymes of nitrogenase: Mo-nitrogenase, V-nitrogenase and Fe-nitrogenase. The activity of these isozymes strongly depends on their metal cofactors, Mo, V and Fe, and their bioavailability in ecosystems. Here, we show how metal bioavailability can be affected by the presence of tannic acid (organic matter), and the subsequent consequences on diazotrophic growth of the soil bacterium Azotobacter vinelandii. In the presence of tannic acids, A. vinelandii produces a higher amount of metallophores, which coincides with an active, regulated and concomitant acquisition of Mo and V under cellular conditions that are usually considered not Mo limiting. The associated nitrogenase genes exhibit decreased nifD expression and increased vnfD expression. Thus, in limiting bioavailable metal conditions, A. vinelandii takes advantage of its nitrogenase diversity to ensure optimal diazotrophic growth.

Authors: C. Jouogo Noumsi, N. Pourhassan, R. Darnajoux, , , V. Burrus, J. P. Bellenger

Date Published: 10th Nov 2015

Publication Type: Not specified

Powered by
(v.1.15.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH