Publications

What is a Publication?
6 Publications visible to you, out of a total of 6

Abstract (Expand)

The guts of insects harbor symbiotic bacterial communities. However, due to their complexity, it is challenging to relate a specific symbiotic phylotype to its corresponding function. In the present study, we focused on the forest cockchafer (Melolontha hippocastani), a phytophagous insect with a dual life cycle, consisting of a root-feeding larval stage and a leaf-feeding adult stage. By combining in vivo stable isotope probing (SIP) with 13C cellulose and 15N urea as trophic links, with Illumina MiSeq (Illumina-SIP), we unraveled bacterial networks processing recalcitrant dietary components and recycling nitrogenous waste. The bacterial communities behind these processes change between larval and adult stages. In 13C cellulose-fed insects, the bacterial families Lachnospiraceae and Enterobacteriaceae were isotopically labeled in larvae and adults, respectively. In 15N urea-fed insects, the genera Burkholderia and Parabacteroides were isotopically labeled in larvae and adults, respectively. Additionally, the PICRUSt-predicted metagenome suggested a possible ability to degrade hemicellulose and to produce amino acids of, respectively, 13C cellulose- and 15N urea labeled bacteria. The incorporation of 15N from ingested urea back into the insect body was confirmed, in larvae and adults, by isotope ratio mass spectrometry (IRMS). Besides highlighting key bacterial symbionts of the gut of M. hippocastani, this study provides example on how Illumina-SIP with multiple trophic links can be used to target microorganisms embracing different roles within an environment.

Authors: P. Alonso-Pernas, S. Bartram, E. M. Arias-Cordero, A. L. Novoselov, L. Halty-deLeon, Y. Shao, W. Boland

Date Published: 28th Oct 2017

Publication Type: Not specified

Abstract (Expand)

In higher plants, jasmonates are lipid-derived signaling molecules that control many physiological processes, including responses to abiotic stress, defenses against insects and pathogens, and development. Among jasmonates, omega-oxidized compounds form an important subfamily. The biological roles of these omega-modified derivatives are not fully understood, largely due to their limited availability. Herein, a brief (two-step), simple and efficient (>80% yield), versatile, gram-scalable, and environmentally friendly synthetic route to omega-oxidized jasmonates is described. The approach utilizes olefin cross-metathesis as the key step employing inexpensive, commercially available substrates and catalysts.

Authors: G. H. Jimenez-Aleman, S. Secinti, W. Boland

Date Published: 1st Jul 2017

Publication Type: Not specified

Abstract (Expand)

Small molecules capable of uncoupling growth-defense in plants are currently not known. In this study, for the first time, semi-synthetic analogues of the phytohormone JA-Ile are employed to uncouple growth and defense responses in wild tobacco. The JA-Ile analogues are easily synthesized from inexpensive substrates via olefin metathesis.

Authors: G. H. Jimenez-Aleman, R. A. R. Machado, I. T. Baldwin, W. Boland

Date Published: 7th Mar 2017

Publication Type: Not specified

Abstract (Expand)

Insects develop efficient antimicrobial strategies to flourish in a bacterial world. It has long been proposed that native gut microbiota is an important component of host defense; however, the responsible species have rarely been isolated to elucidate the mechanism of action. Here we show that the dominant symbiotic bacterium Enterococcus mundtii associated with the generalist herbivore Spodoptera littoralis actively secretes a stable class IIa bacteriocin (mundticin KS) against invading bacteria, but not against other gut residents, facilitating the normal development of host gut microbiota. A mundticin-defective strain lost inhibitory activity. Furthermore, purified mundticin cures infected larvae. Thus, the constitutively produced antimicrobials by native extracellular symbionts create a significant chemical barrier inside limiting invader expansion. This unique property also benefits E. mundtii itself by providing a competitive advantage, contributing to its dominance within complex microbial settings and its prevalence across Lepidoptera, and probably promotes the long-term cooperative symbiosis between both parties.

Authors: Y. Shao, B. Chen, C. Sun, K. Ishida, C. Hertweck, W. Boland

Date Published: 21st Jan 2017

Publication Type: Not specified

Abstract (Expand)

Microbes that live inside insects play critical roles in host nutrition, physiology, and behavior. Although Lepidoptera (butterflies and moths) are one of the most diverse insect taxa, their microbial symbionts are little-studied, particularly during metamorphosis. Here, using ribosomal tag pyrosequencing of DNA and RNA, we investigated biodiversity and activity of gut microbiotas across the holometabolous life cycle of Spodoptera littoralis, a notorious agricultural pest worldwide. Proteobacteria and Firmicutes dominate but undergo a structural "metamorphosis" in tandem with its host. Enterococcus, Pantoea and Citrobacter were abundant and active in early-instar, while Clostridia increased in late-instar. Interestingly, only enterococci persisted through metamorphosis. Female adults harbored high proportions of Enterococcus, Klebsiella and Pantoea, whereas males largely shifted to Klebsiella. Comparative functional analysis with PICRUSt indicated that early-instar larval microbiome was more enriched for genes involved in cell motility and carbohydrate metabolism, whereas in late-instar amino acid, cofactor and vitamin metabolism increased. Genes involved in energy and nucleotide metabolism were abundant in pupae. Female adult microbiome was enriched for genes relevant to energy metabolism, while an increase in the replication and repair pathway was observed in male. Understanding the metabolic activity of these herbivore-associated microbial symbionts may assist the development of novel pest-management strategies.

Authors: B. Chen, , C. Sun, S. Hu, X. Lu, , Y. Shao

Date Published: 9th Jul 2016

Publication Type: Not specified

Abstract (Expand)

The alkaline gut of Lepidopterans plays a crucial role in shaping communities of bacteria. Enterococcus mundtii has emerged as one of the predominant gut microorganisms in the gastrointestinal tract of the major agricultural pest, Spodoptera littoralis. Therefore, it was selected as a model bacterium to study its adaptation to harsh alkaline gut conditions in its host insect throughout different stages of development (larvae, pupae, adults, and eggs). To date, the mechanism of bacterial survival in insects' intestinal tract has been unknown. Therefore, we have engineered a GFP-tagged species of bacteria, E. mundtii, to track how it colonizes the intestine of S. littoralis. Three promoters of different strengths were used to control the expression of GFP in E. mundtii. The promoter ermB was the most effective, exhibiting the highest GFP fluorescence intensity, and hence was chosen as our main construct. Our data show that the engineered fluorescent bacteria survived and proliferated in the intestinal tract of the insect at all life stages for up to the second generation following ingestion.

Authors: , J. Apel, Y. Shao,

Date Published: 6th Jul 2016

Publication Type: Not specified

Powered by
(v.1.15.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH