Publications

What is a Publication?
3 Publications visible to you, out of a total of 3

Abstract (Expand)

True flies and mosquitos (Diptera) live in habitats and consume diets that pose specific demands on their gut bacterial communities (GBCs). Due to diet specializations, dipterans may have highly diverse and species-specific GBCs. Dipterans are also confronted with changes in habitat and food sources over their lifetime, especially during life history processes (molting, metamorphosis). This may prevent the development of a constant species- or diet-specific GBC. Some dipterans are vectors of several human pathogens (e.g., malaria), which interact with GBCs. In this review, we explore the dynamics that shape GBC composition in some Diptera species on the basis of published datasets of GBCs. We thereby focus on the effects of diet, habitats, and life cycle stages as sources of variation in GBC composition. The GBCs reported were more stage-specific than species- or diet-specific. Even though the presence of GBCs has a large impact on the performance of their hosts, the exact functions of GBCs and their interactions with other organisms are still largely unknown, mainly due to the low number of studies to date. Increasing our knowledge on dipteran GBCs will help to design pest management strategies for the reduction of insecticide resistance, as well as for human pathogen control.

Authors: R. Sontowski, N. M. van Dam

Date Published: 17th Aug 2020

Publication Type: Journal

Abstract (Expand)

The optimal defense theory predicts that plants invest most energy in those tissues that have the highest value, but are most vulnerable to attacks. In Brassica species, root-herbivory leads to the accumulation of glucosinolates (GSLs) in the taproot, the most valuable belowground plant organ. Accumulation of GSLs can result from local biosynthesis in response to herbivory. In addition, transport from distal tissues by specialized GSL transporter proteins can play a role as well. GSL biosynthesis and transport are both inducible, but the role these processes play in GSL accumulation during root-herbivory is not yet clear. To address this issue, we performed two time-series experiments to study the dynamics of transport and biosynthesis in local and distal tissues of Brassica rapa. We exposed roots of B. rapa to herbivory by the specialist root herbivore Delia radicum for 7 days. During this period, we sampled above- and belowground plant organs 12 h, 24 h, 3 days and 7 days after the start of herbivory. Next, we measured the quantity and composition of GSL profiles together with the expression of genes involved in GSL biosynthesis and transport. We found that both benzyl and indole GSLs accumulate in the taproot during root-herbivory, whereas we did not observe any changes in aliphatic GSL levels. The rise in indole GSL levels coincided with increased local expression of biosynthesis and transporter genes, which suggest that both biosynthesis and GSL transport play a role in the accumulation of GSLs during root herbivory. However, we did not observe a decrease in GSL levels in distal tissues. We therefore hypothesize that GSL transporters help to retain GSLs in the taproot during root-herbivory.

Authors: A. J. Touw, A. Verdecia Mogena, A. Maedicke, R. Sontowski, N. M. van Dam, T. Tsunoda

Date Published: 31st Jan 2020

Publication Type: Journal

Abstract (Expand)

Glucosinolates (GSLs) evolved in Brassicaceae as chemical defenses against herbivores. The GSL content in plants is affected by both abiotic and biotic factors, but also depends on the genetic background of the plant. Since the bitter taste of GSLs can be unfavorable for both livestock and human consumption, several plant varieties with low GSL seed or leaf content have been bred. Due to their lower GSL levels, such varieties can be more susceptible to herbivore pests. However, low GSL varieties may quickly increase GSL levels upon herbivore feeding by activating GSL biosynthesis, hydrolysis, or transporter genes. To analyze differences in herbivore-induced GSL responses in relation to constitutive GSL levels, we selected four Brassica rapa varieties, containing either low or high root GSL levels. Plants were infested either with Delia radicum or Delia floralis larvae. The larvae of both root flies are specialists on Brassica plants. Root samples were collected after 3, 5, and 7 days. We compared the effect of root herbivore damage on the expression of GSL biosynthesis (CYP79A1, CYP83B2), transporter (GTR1A2, GTR2A2), and GSL hydrolysis genes (PEN2, TGG2) in roots of low and high GSL varieties in conjugation with their GSL levels. We found that roots of high GSL varieties contained higher levels of aliphatic, indole, and benzyl GSLs than low GSL varieties. Infestation with D. radicum larvae led to upregulation of indole GSL synthesis genes in low and high GSL varieties. High GSL varieties showed no or later responses than low varieties to D. floralis herbivory. Low GSL varieties additionally upregulated the GSL transporter gene expression. Low GSL varieties did not show a stronger herbivore-induced response than high GSL varieties, which indicates that there is no trade-off between constitutive and induced GSLs.

Authors: R. Sontowski, N. J. Gorringe, S. Pencs, A. Schedl, A. J. Touw, N. M. van Dam

Date Published: 5th Dec 2019

Publication Type: Journal

Powered by
(v.1.15.2)
Copyright © 2008 - 2024 The University of Manchester and HITS gGmbH